
3. daisy:15 (Lipson, Howard F.)

4. A simple arithmetic overflow doomed the Ariane 5, but taken in its operational and software engineering context, the
circumstances surrounding the error were complex.

Evolutionary Design of Secure Systems - The First Step Is
Recognizing the Need for Change
Howard Lipson, Software Engineering Institute [vita3]

Copyright © 2006 Carnegie Mellon University

2006-04-19

A fundamental truth of system design is that, in the absence of countermeasures, a system’s security will
degrade over time. Security degrades not because any bits “rust out” or because the system shows any
other manifestations of physical aging. Rather, changes in the environment or usage of a system, or
changes to the elements that compose the system, often introduce new or elevated threats that the system
was not designed to handle and is ill-prepared to defend itself against. Since security is a system-wide
property, successfully dealing with such changes often requires revisiting every phase of the system
development life cycle (SDLC) to at least some degree and poses particularly critical challenges for the
assembly and integration phase.

The system you have assembled and integrated from vendor and custom components must evolve in
response to a myriad of environmental changes, but the first step in evolving to meet new threats to your
system’s security is to recognize the need for change—that is, the need to enter the evolution phase of
the SDLC. The following example (although not about a security failure) illustrates the critical
importance of recognizing the need for evolutionary design changes.

Assumptions Evolve, and So Must Software
What has become a classic example of the catastrophic consequences that can result from a simple
software error4 was the explosion of the unmanned Ariane 5 rocket during the first minute of its maiden
flight on the morning of June 4, 1996 [ESA-CNES 96]. The explosion destroyed the launch vehicle’s
payload (a set of scientific satellites) worth on the order of $500 million.

The Ariane 5’s flight control software reused design specifications and code from its highly successful
predecessor, the Ariane 4 launch vehicle. In particular, one of the on-board modules, the Inertial
Reference System, performed a data conversion of a 64-bit floating point value related to the horizontal
velocity of the rocket and attempted to place the result into a 16-bit signed integer variable. This
computation had never caused a problem with the Ariane 4, but the more aggressive flight path and
much faster acceleration of the Ariane 5 produced a higher horizontal velocity and a corresponding data
value that was too large for the 16-bit signed integer variable, causing an arithmetic overflow. A
redundant backup process used the same software and failed in the same manner. The Inertial Reference
System then generated some diagnostic output that was incorrectly interpreted as flight control data by
other portions of the flight control system. Based on this faulty interpretation, the flight control system
took actions that led to the self-destruction of the rocket.

Although arithmetic overflow is a very well-known and highly preventable error, the Arian 4 design
team did not add the exception-handling code necessary to check for arithmetic overflow and take
appropriate remedial action. Based on the operating characteristics of the Ariane 4, the design team felt
it was physically impossible to have a horizontal velocity large enough to cause an arithmetic overflow
of a 16-bit signed integer variable. However, the reuse of this software in the Ariane 5 placed the code in

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

1

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

daisy:15

5. Hence, assumption mismatches occur not only across architectures, components, and systems, they also occur over time.

6. Although this example is specifically about reuse, the lessons learned apply to the evolution of an aging component or
system as well.

7. This is a revised and updated version of one of the sections contributed by Howard Lipson for “Managing Software
Development for Survivable Systems” [Mead 01].

a very different operating context in which the specific design assumption relating to horizontal velocity
was no longer valid. Although the operating characteristics of the rocket had evolved, the underlying
design assumptions based on those characteristics were not revisited by the design or testing teams, and
so the software did not evolve to reflect its new operating environment. The assumptions on which the
design was based no longer reflected reality.

In all there were 14 recommendations by the Flight 501 Failure Inquiry Board [ESA-CNES 96]. Two
had especially strong implications for software evolution, software architecture, code reuse, and the
design of COTS-based systems: recommendation 5 (first two bullet items), and recommendation 12:

R5 Review all flight software (including embedded software), and in particular:

• Identify all implicit assumptions made by the code and its justification documents on the
values of quantities provided by the equipment. Check these assumptions against the
restrictions on use of the equipment.

• Verify the range of values taken by any internal or communication variables in the software.

• ...

R12 Give the justification documents the same attention as code. Improve the technique for
keeping code and its justifications consistent.

Mismatches in the basic assumptions (and in particular the risk-management assumptions) on which the
design of a system is based have historically been a fundamental cause of countless security, safety, and
survivability problems. Architectural mismatches among components are a nearly universal source of
problems [Garlan 95] and are a direct result of mismatched assumptions. The security and survivability
of COTS-based systems (and other forms of software reuse) suffer from mismatches between the
assumptions made by the COTS software designers and the assumptions made by the system integrators
[Lipson 01]. Invalid assumptions made by designers about the real-world operating environment are
another cause of system failures. However, even if all such assumptions were correct and were perfectly
matched during the initial design, implementation, and initial deployment, the facts or circumstances on
which some of these assumptions are based will invariably change over time. Any security (or other)
problem arising from these changes can be considered to be a case of evolution failure—the failure of a
system’s designers to evolve the system in a manner that properly reflects the impact of changes (e.g., in
technology, operating environment, business mission) on its underlying assumptions.5 Whether creating
new systems and components or reusing existing ones, designing a system for evolution is a key aspect
of building security in (or building quality in) from the outset.6

Recognizing the Need for Evolutionary Design Activity 7

The strongest implication of the concept of evolutionary design is that the sustainment of any
mission-critical system requires perpetual design. That is, at least to some extent, all SDLC activities
must be perpetual if the quality attributes of a system are to be sustained over time. In addition to
evolving a system and its components, it is also crucial for assurance cases (i.e., assurance arguments
composed of artifacts and other evidence of assurance of desired system properties) to evolve as well.
System characteristics that hinder or promote evolution are discussed in Topics in Interoperability:
System-of-Systems Evolution [Carney 05]. Some fundamental “laws” of software evolution are described

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

2

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

8. A survivable system is one that continues to fulfill its mission despite an attack, accident, or subsystem failure.
Survivability blends security and business risk management [Lipson 99] and is based on ensuring that the quality attributes
that are critical to the success of an organizational mission, such as availability and reliability, are sustained. The overall
level of service may gracefully degrade under stress, but a survivable system continues to provide the essential services
that support the organizational mission.

in “Rules and Tools for Software Evolution Planning and Management” [Lehman 01].

We argue strongly that significant risk management resources should be devoted to the ongoing
evolution of any mission-critical system. The successful evolutionary design of secure and survivable
systems8 is dependent on the continual monitoring of the system and its environment to detect changes
that may affect the risk management assumptions on which the security and survivability of the system
are founded.

Any significant change in system requirements can certainly affect the underlying risk management
assumptions, but the effects of other changes might not be as obvious. Therefore, one of the most
essential uses for risk management resources would be to support security and survivability monitoring
to provide early warnings of emerging threats and increased risks to the system. The amount of
resources to be devoted to this activity, and to those that conduct it, will depend on executive
management’s risk tolerance and their perception of the cost/benefit ratio for this effort.

We use the term risk assessment triggers to refer to the elements of a system or its environment that
should be monitored, looking for changes that can affect the risk management assumptions that underlie
a system’s security and survivability properties. Ideally, a best practice for system design would require
that all such assumptions be explicitly specified in a design rationale document or in other system
artifacts, but typically many such assumptions are merely implicit. Nevertheless, if during the lifetime of
a system any of the assumptions on which its design was based no longer hold, the mission-critical
properties of a system (in particular its security properties) must be reevaluated. It is therefore critical for
management and the system design team to be made aware of any event or change that appears (or has
the potential) to undermine one or more of those risk management assumptions. However, it is up to
management and the system design team to determine whether a particular change or set of changes
should trigger an evolutionary design activity and to decide on the extent of that activity.

Table 1 contains a representative set of risk assessment change factors (trigger elements) that might be
tracked by an organization. Trigger events include changes in attack techniques, mission, management,
staff, customers, and in the technological and legal environments. They also include changes to the
elements that compose your system and changes to other systems with which your system is involved in
a system-of-systems relationship.

Table 1. Factors that influence evolutionary design of secure systems

Change Factors (Triggers) Examples of Trigger Events

Business and Organizational

Mission, essential services, essential quality attributes, key
information resources and assets

The organization’s mission has changed or the system will be purchased and deployed
by other organizations with different missions.

Business strategies and tactics Changes in business strategies or tactics may require new types of data to be collected
and processed, as well as increased connectivity among elements of the system,
imposing new security requirements.

Management New executive managers may differ in their tolerance for risk and their risk
management strategies.

Organizational staff Turnover may result in a lowering of staff expertise, which reduces the organization’s
ability to handle the human processes associated with security, such as properly

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

3

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

10. This category is meant to represent the malicious threat environment only. Hence, ordinary business competitors who
essentially engage in fair play are considered to be part of the Business and Organizational category. Nonetheless, they can
certainly threaten the long-term survival of other businesses through aggressive marketplace competition that stays within
the rules and the law.

configuring systems for optimal security. Moreover, in a rapidly growing organization,
new staff may be less trustworthy than previous staff (e.g., less time for background
checks or more remotely stationed employees).

Workflow and processes Changes in organizational processes to which the system contributes may affect the
overall survivability of the mission. There may be new ways to attack the system or its
human-machine interface.

Customers New customers may be less known (and hence less trustworthy), may require more
extensive access to information resources and assets, or may require a higher quality of
service (e.g., higher availability) than previous customers.

Collaborators A new or existing collaborator may require a deeper level of integration with your
business processes than your system currently supports. Or your partner on one project
may become your competitor on another, requiring a more complex trust model.

Competitors Business competitors may offer new services to your customers that your system
currently cannot provide.

Usage, functionality, access, or quality of service User requests for a new means of access to a system (e.g., wireless networking), new
ways of using an existing system, the introduction of a service, or improvements in the
quality of an existing service have security and survivability implications that need to be
considered in any design activity undertaken in response to those requests. For example,
a manufacturing plant that will now be handling a new and particularly volatile
chemical ingredient requires an evolutionary redesign to improve the security and safety
of the plant’s control systems.

Threat Environment10

Attack techniques A new attack technique or variation has been discovered for which the system cannot
adapt automatically or through routine maintenance (e.g., simply by adding a new rule
for resistance, recognition, or recovery).

Malicious adversaries Awareness of industrial competitors engaging in espionage (or sabotage), growth in
criminal activity, or increases in nation-state-sponsored cyber terrorism may require
additional system resources to be devoted to security and survivability.

Operating Environment

Technology environment Changes in the technological environment in which the system operates (e.g., changes
in the systems environment, the availability of new security tools and techniques,
technological advances in the state of the practice for the application domain, and the
increasingly widespread dissemination of detailed knowledge about the application
domain and its supporting technologies) can trigger the need for evolutionary
improvements in system security and survivability.

Physical environment The migration from wired desktops situated in a physically secure environment to
laptops and other wireless mobile devices that routinely traverse insecure and even
hostile environments increases the possibility of both physical and cyber theft. This
intensifies the need to strengthen the protection of enterprise-sensitive data resident on
those devices, as well as access to enterprise databases and services through those
devices.

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

4

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

Economic Environment and the Acquisition
Marketplace

Cost, profit, and affordability Changing cost factors may threaten or improve a system’s survivability because they
change the cost/benefit ratio associated with various survivability solutions (e.g., risk
mitigation strategies). Affordability is a primary factor that is traded off against security
and survivability. For instance, new technology could provide a replacement for an
existing component at a much lower price. Greatly reduced component cost could
trigger an evolutionary redesign, using multiple instances of the new component
(possibly from multiple vendors) to provide increased redundancy and diversity, thereby
supporting greater survivability. As another example, increased stockholder demands
for short-term profits may tilt the security and survivability requirements toward higher
risk, which may be reflected in cutbacks in security administrators or vendor
maintenance contracts.

Vendors and contractors A new vendor for a system component may require remote maintenance and trusted
access.

COTS products You may have to replace a COTS component that is no longer supported with a new
component whose contribution to system security and survivability needs to be
evaluated.

Political, Social, Legal, and Regulatory Environment

Legal environment New laws, increased enforcement of existing laws, and lawsuits can change the risk
equation and threaten the mission. For instance, use of the system in a new and stricter
jurisdiction may increase the risk of liability, which might be mitigated by strengthening
certain aspects of the system’s security.

Government regulation Changes in government regulations that mandate increased privacy, security, safety,
competition, or quality of service may trigger the need to modify a system’s design to
ensure that these new requirements are specified and satisfied.

Certification requirements or standards Customers, regulators, and insurers may expect a system to be modified to the extent
necessary to comply with new (or changed) standards or certification requirements, so
as to reduce the actual or perceived level of risk associated with operating a system in a
particular domain or environment. For example, business interruption insurance rates
that include cyber attack may depend on a certification of the security and survivability
of a system (i.e., the presentation of sufficient evidence to demonstrate that the system
meets a given standard).

Political and social environment Changes in privacy concerns, trust relationships, or the risk tolerance of a society will
affect the security and survivability requirements that systems are expected to satisfy.

Relationships to Other Systems and Infrastructures

Dependencies and interdependencies New interconnections among the systems within an enterprise can create single points
of failure, such as multiple systems relying on a single service. Increased dependency
on a system may also be brought about by the elimination of manual processes, staff
positions, or legacy systems, which means there is no longer an alternative if the system
fails. Increasing the interdependencies within an enterprise may mean that a failure is
more likely to have pervasive effects (e.g., cascading failures). Moreover, a mismatch in
security models among the interconnected systems can readily cause a violation of
security requirements.

Usage relationships Changes to systems that depend on your system (and of course changes to any system
that your system depends on) may require evolutionary changes to your system to
sustain the security and survivability of the overall system of systems.

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

5

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

System Feedback
(Lessons Learned)

System instrumentation and audits System logs allow the operations team to monitor and improve the security and
survivability of the system while it is in use (e.g., through configuration changes).
Further analyses of this data may be used to identify survivability issues and to improve
security and other system quality attributes in future releases of the system. This
analysis may also identify gaps in system instrumentation and the need for
improvements in the quality or coverage of system logs and in the frequency or quality
of audits.

Operational experience (attacks, accidents, and failures) Feedback from the field may lead to the discovery of new threats to a system’s security
and survivability or may reveal existing deficiencies.

Results of periodic security and survivability evaluations Troublesome results from regularly scheduled penetration testing or other security and
survivability evaluations can trigger awareness of the need for evolutionary
improvements.

Technical society meetings, security courses, seminars,
journals, news reports

Awareness of lessons learned by others’ system failures and compromises can trigger
improvements in your own system.

Evolutionary Design Activities
A change in one or more of the trigger elements can initiate any of a broad range of evolutionary design
activities described in Table 2, from no action at all, to performing one or more system development life
cycle activities, to abandonment of the system. The organizational unit responsible for monitoring for
changes in risk management assumptions would initiate the consideration of an evolutionary design
activity, but management and the system design team would be responsible for evaluating the impact of
any trigger event that was identified and for determining the scope of any subsequent design activity in
response to that event.

Table 2. Possible evolutionary design activities in response to a trigger event

Evolutionary Design Activity Example

1. No action needed or taken Conclude that greatly increased hiring activity
does not pose a new threat to the system’s mission
because all new hires are subject to thorough
background checks.

2. No action taken, but increase monitoring of this
trigger (or set of triggers)

Increase resources devoted to monitoring feedback
from the field in response to evidence from
operations indicating a performance slowdown
resulting from a rare combination of customer
actions.

3. Further analysis needed to determine next
activity, if any

Generate scenarios that reflect the discovery of a
new type of cyber attack. Use these scenarios as
input for a security analysis, the results of which
may drive additional evolutionary design
activities.

4. Perform a portion (delta) of one or some of the
system development life cycle activities

A small change to the system architecture
increases resistance to a new attack scenario.

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

6

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

5. Perform a portion (delta) of each of the full set
of life-cycle activities

A modification to the mission touches all
life-cycle activities to one extent or another.

6. Do a full redesign A major change in the technology of the
application domain, coupled with sweeping
improvements in defensive technology, cannot be
incorporated by evolutionary design activities
alone.

7. Abandon the system A drastic change in the mission makes the system
obsolete or unnecessary.

For example, a computer security expert involved in risk assumption monitoring learns of a new attack
technique that might threaten the security and survivability of the existing system. Let’s assume that this
new attack technique cannot be countered by straightforward maintenance activities such as applying a
security patch to a system component or adding a new rule to a firewall. Based on the new attack
technique, the security expert generates a set of attack scenarios to be used as input for a security and
survivability analysis of the existing system. If deficiencies in the system’s resistance to this new attack
(or in the system’s ability to recognize or recover from the attack) are discovered, then one or more
life-cycle activities, such as a modification of the system architecture or a change in security and
survivability requirements, will be necessary.

The completion of one life-cycle activity may trigger the need for another. Adjustments in the design
tradeoffs with other system quality attributes may also be called for. For example, a specific
architectural change meant to improve security may have unanticipated adverse effects on some other
system quality attributes. These implicit tradeoffs can be systematically evaluated and explicitly adjusted
using the results of an architecture tradeoff analysis [Kazman 98]. The point at which the evolutionary
design process stops is dependent on the risk tolerance of the organization, and the perceived
cost/benefit ratio, with respect to the particular set of trigger events. If evolution is not feasible, the
organization may tolerate the risk or seek other alternatives that transcend the system.

It is essential that the evolutionary design activities take place in the context of full access to a
comprehensive set of artifacts of the design process (such as descriptions of the rationale for tradeoffs
made during the last design cycle). Continuity of at least the core members of the design team is
particularly crucial for the evolutionary design of survivable systems so that the mission-specific design
expertise can be sustained throughout the life of the system. Otherwise, the evolutionary design process
will likely degenerate into patching, which can never support the long-term security of systems. Just as
security must be designed into a system from the beginning and not tacked on later as an afterthought,
long-term security cannot be sustained through patching or routine maintenance but only through the
continual incorporation of new security and survivability solutions through a principled evolutionary
design process. The development and promulgation of a suite of best practices to support this process
would be a fundamental contribution to the software engineering profession.

More to Come ...
While evolutionary design is a critical aspect of building security in, there are few best practices for
evolution that are supported by ample evidence and general consensus in the software engineering
community. Those practices that do exist are typically classified under software maintenance.

Moreover, many aspects of evolutionary design are not yet well-understood by the software engineering
community. For example, it is not practical (i.e., not economically feasible) for a system to evolve along
all of the possible dimensions outlined in Table 1. How to decide during the initial design of a system
which dimensions of change are most likely and how to make them amenable to low cost redesign or
automated upgrades is an important topic for further research and investigation. Some limited success in

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

7

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

13. http://www.sei.cmu.edu/publications/documents/05.reports/05tn002/05tn002.html

14. http://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report

15. http://www.sei.cmu.edu/ata/iceccs.pdf

this area has been achieved through automatic upgrades of firewall rules and databases of attack
signatures for detecting and eliminating viruses and other malware—essentially rapidly evolving a
system in response to evolving security threats.

As the BSI web site continues to grow, we plan to provide additional material on evolutionary design
considerations for building secure and survivable systems, including evolutionary design principles and
candidate best practices solicited from the software engineering community. The goal is to begin to
formulate a set of demonstrably useful, highly actionable best practices to support evolutionary design,
which we consider to be to be an essential part of building security in—that is, building in the capability
to evolve and improve the security and survivability of a system over its full lifetime of use.

References

[Carney 05] Carney, David; Fisher, David; & Place, Patrick.
Topics in Interoperability: System-of-Systems
Evolution13 (CMU/SEI-2005-TN-002). Pittsburgh,
PA: Software Engineering Institute, Carnegie
Mellon University, 2005.

[ESA-CNES 96] European Space Agency (ESA) and National
Center for Space Study (CNES) Inquiry Board
(Prof. J. L. Lions, Chairman). ARIANE 5 – Flight
501 Failure – Report by the Inquiry Board14. Paris:
ESA and CNES, July 19, 1996.

[Garlan 95] Garlan, David; Allen, Robert; & Ockerbloom,
John. “Architectural Mismatch: Why Re-use Is So
Hard.” IEEE Software 12, 6 (November 1995):
17-26.

[Kazman 98] Kazman, R.; Klein, M.; Barbacci, M.; Longstaff,
T.; Lipson, H. F.; & Carriere, S. J. “The
Architecture Tradeoff Analysis Method15.”
Proceedings of the Fourth IEEE International
Conference on Engineering of Complex Computer
Systems (ICECCS 1998). Monterey, CA, USA,
August 10-14, 1998. Los Alamitos, CA: IEEE
Computer Society Press, 1998.

[Lehman 98] Lehman, M. M. “Software’s Future: Managing
Evolution.” IEEE Software 15, 1
(January/February 1998): 40-44.

[Lehman 01] Lehman, M. M. & Ramil, Juan F. “Rules and
Tools for Software Evolution Planning and
Management.” In special issue on Software
Management, Annals of Software Engineering 11,
1 (November 2001): 15-44.

[Lipson 99] Lipson, Howard & Fisher, David.

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

8

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

http://www.sei.cmu.edu/publications/documents/05.reports/05tn002/05tn002.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tn002/05tn002.html
http://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
http://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report

16. http://www.cert.org/research/papers.html

1. http://www.sei.cmu.edu/about/legal-permissions.html

Survivability—A New Technical and Business
Perspective on Security16,” 33–39. Proceedings of
the 1999 New Security Paradigms Workshop.
Caledon Hills, Ontario, Canada, Sept. 22–24,
1999. New York: Association for Computing
Machinery, 2000.

[Lipson 02] Lipson, H. F.; Mead, N.; & Moore, A. P. “Can We
Ever Build Survivable Systems from COTS
Components?” Proceedings of the 14th
International Conference on Advanced
Information Systems Engineering (CAiSE' 02).
Toronto, Ontario, Canada, May 27-31, 2002.
Heidelberg, Germany: Springer-Verlag (LNCS
2348), 2002.

[Mead 01] Mead, N. R.; Linger, R. C.; McHugh, J; & Lipson,
H. F. “Managing Software Development for
Survivable Systems.” Annals of Software
Engineering 11, 1 (November 2001): 45-78.

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the
SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Fields

Name Value

Copyright Holder SEI

Fields

Name Value

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

9

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

http://www.cert.org/research/papers.html
http://www.cert.org/research/papers.html
http://www.sei.cmu.edu/about/legal-permissions.html

is-content-area-overview false

Content Areas Best Practices/Assembly, Integration, & Evolution

SDLC Relevance Architecture
Design

Workflow State Publishable

Evolutionary Design of Secure Systems - The First Step Is Recognizing the Need
for Change

10

ID: 467 | Version: 13 | Date: 6/14/06 4:32:38 PM

